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The Magnetic Field of a Finite Solenoid 

By Jacob Graham  

 

Abstract 

The magnetic field of a solenoid is an elementary problem in classical electrodynamics taught to undergraduate physics students.  

In this paper, we derive 7 approximations of the components of the magnetic field both within and outside a finite solenoid. 

These approximations can be used in practical application. More importantly, they can be used to strengthen the symmetry 

arguments regarding the magnetic field of an infinite solenoid.  
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1 Introduction 

The magnetic field of a solenoid is an elementary problem in classical electrodynamics taught to undergraduate physics students.  

In this paper, we derive 7 approximations of the components of the magnetic field both within and outside a finite solenoid. 

These approximations can be used in practical application. More importantly, they can be used to strengthen the symmetry 

arguments regarding the magnetic field of an infinite solenoid.  

 

2 Magnetic Field within a finite solenoid: 

In the following derivations, we will use a cylindrical coordinate system with the standard (r,, z) coordinates. The z-axis lies on 

the central axis of the solenoid.  is the azimuthal angle while r is measured from the center axis. 

We will derive multiple approximations depending on the relative values of r’, R, and Len for a single component.  

 

2.1 Axial component of magnetic field 

To calculate the B-field on the axis of the solenoid, we utilize the well-known fact that the B field on the center axis of a current 

loop is given by: 

𝐵(𝑙𝑜𝑜𝑝) =
𝐼𝑅2

2(𝑧2 + 𝑅2)
3
2

(1) 

Where I is the current in the loop, R is its radius, and z is the distance from the center of the loop to any arbitrary point on the 

center axis. Assume a vacuum permeability constant of . 

Assuming that the solenoid is a tightly-packed collection of loops, we can say that each loop contributes a  

𝑑𝐵(𝑙𝑜𝑜𝑝) =
()(𝑑𝐼)𝑅2

2(𝑧2 + 𝑅2)
3
2

(2) 

to the total B-field on the axis of the solenoid.  

For a given dz of the solenoid, the value of dI within that dz is given by dI=𝐼𝑛𝑑𝑧, where 𝑛 =
𝑁

𝐿𝑒𝑛
, the number of turns (N) per unit 

length (Len). We then have: 

𝑑𝐵(𝑙𝑜𝑜𝑝)
(𝐼𝑛𝑅2)𝑑𝑧

2(𝑧2 + 𝑅2)
3
2

(3) 

Integration of this expression over the solenoid yields the total Bz component at any point P with z-coordinate z’ (measured from 

the center of the solenoid). This integral is easily solved by performing a standard trigonometric substitution with 𝑧 = 𝑅 tan ø.  

 

Bz=∫
(𝐼𝑛𝑅2)𝑑𝑧

2(𝑧2+𝑅2)
3
2

𝐿𝑒𝑛

2
−𝑧′

−
𝐿𝑒𝑛

2
−𝑧′

= 
𝑛𝐼

2
(

𝐿𝑒𝑛

2
−𝑧′

√𝑅2+(
𝐿𝑒𝑛

2
+𝑧′)

2
+

𝐿𝑒𝑛

2
+𝑧′

√(𝑅2+(
𝐿𝑒𝑛

2
+𝑧′)

2
) (4) 



Page 2 

Of course, the above equation is only an approximation for a “real” solenoid, as it assumes that the solenoid is an infinitely 

tightly-packed stack of closed loops.  

Normalizing this expression by substituting 𝐾 =
𝐿𝑒𝑛

𝑅
 and 𝐶 =

𝑧′

𝑅
 and simplifying the resulting expressions gives: 

Bz = 
𝑛𝐼

2
(

𝐾

2
−𝐶

√1+(
𝐾

2
−𝐶)

2
+

𝐾

2
+𝐶

√(1+(
𝐾

2
+𝐶)

2
) (5) 

It is clear that lim
𝐾→∞

𝐵𝑧=𝑛𝐼, the standard result given by most undergraduate textbooks. It is important to note that this holds as 

𝐿𝑒𝑛 → ∞ and R is finite, or 𝑅 → 0 and Len is finite.  

 

2.2 Radial component of magnetic field  

 

To get an approximation of the radial field within the solenoid, we approximate each loop as a square loop made up of 4 wires, 

each of length 2R. 

 

 

𝐵(𝑤𝑖𝑟𝑒) =
𝐼

4𝜋𝑟
(

𝐿𝑒𝑛 + 2𝑧′

√4𝑟2 + (𝐿𝑒𝑛 + 2𝑧′)2
+ (

𝐿𝑒𝑛 − 2𝑧′)

√4𝑟2 + (𝐿𝑒𝑛 − 2𝑧′)2
) (30) 

 

 

Where r is the radial distance from the wire to an arbitrary point p and z’ is the distance from the center of the wire to P. r’ 

denotes the perpendicular distance from P to the axis of the solenoid. We label the wire above P as wire “T”, the opposite wire as 

wire “B”, and the wire to the left looking down the axis as wire “1”, while the opposite wire is wire “2”. We place P an arbitrary 

distance z from the square loop 

 

For wire T, 𝑟 = √(𝑅 − 𝑟)2 + 𝑧2, z’=0, and Len=2R. 

 

𝐵(𝑇) =
𝐼𝑅

2𝜋√(𝑅 − 𝑟)2 + 𝑧2
(

1

√(𝑅 − 𝑟)2 + 𝑧2 + 𝑅2)
) (1) 

 

For wire B, 𝑟 = √(𝑅 + 𝑟)2 + 𝑧2, z’=0, and Len=2R. 

 

𝐵(𝐵) =
𝐼𝑅

2𝜋√(𝑅 + 𝑟)2 + 𝑧2
(

1

√(𝑅 + 𝑟)2 + 𝑧2 + 𝑅2)
) (2) 

 

For wires 1 and 2, 𝑟 = √𝑅2 + 𝑧2, z’=r, and Len=2R. 

 

𝐵(1) = 𝐵(2) =  
𝐼

4𝜋√𝑅2 + 𝑧2
(

𝑅 + 𝑟

√𝑧2 + 𝑅2 + (𝑅 + 𝑟)2
+ (

𝑅 − 𝑟

√𝑧2 + 𝑅2 + (𝑅 − 𝑟)2
) (3) 

 

 

Vector components tell us that |B(T)|cos 𝜃 = |Br(T)|, where Br(T) is the radial component of B(T) at  P. 

cos 𝜃  is the angle between the z − axis and the position vector from P to the center of wire T.  Here, cos 𝜃 =
𝑧

√𝑧2+(𝑅−𝑟)2
 P.  

 

We also know that |B(B|)sin  = |Br(B)|, where Br(B) is the radial component of B(B) at  P. 

sin   is the angle between the axis orthogonal to the z − axis and the position vector from P to the center of wire B. Here, 

sin 𝜑 =
𝑧

√𝑧2+(𝑅+𝑟)2
 

 

Wires 1 and 2 do not contribute to Br at P. Since Br(T) and Br(B) point in opposite directions, we have that  

 

Br =  Br(T)- Br(B) 

 

Substituting the above information into ( ), we find that 

 

Br =  
𝐼𝑅𝑧

2𝜋
(

1

√(𝑧2+(𝑅−𝑟)2)(√(𝑅−𝑟)2+𝑧2+𝑅2)

− (
1

√(𝑧2+(𝑅+𝑟)2)(√(𝑅+𝑟)2+𝑧2+𝑅2)

) (4) 
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Following a similar line of logic as in 2.1, we have that  

 

dBr(Loop ) =  
𝐼𝑛𝑅𝑧

2𝜋
(

1

√(𝑧2+(𝑅−𝑟)2)(√(𝑅−𝑟)2+𝑧2+𝑅2)

− (
1

√(𝑧2+(𝑅+𝑟)2)(√(𝑅+𝑟)2+𝑧2+𝑅2)

)𝑑𝑧 (5)  

 

 

Where dBr(Loop) is the infinitesimal contribution of a given dz with dN=ndz number of (square) loops. 

 

Integration of this expression yields an approximation for Br at a point P a distance r radially from the axis of the loop and a 

distance z’ from the center of the solenoid. 

 

Br=
𝐼𝑛𝑅

2𝜋
∫ (

𝑧

√(𝑧2+(𝑅−𝑟)2)(√(𝑅−𝑟)2+𝑧2+𝑅2)

− (
𝑧

√(𝑧2+(𝑅+𝑟)2)(√(𝑅+𝑟)2+𝑧2+𝑅2)

)𝑑𝑧 (6) 
𝑳𝒆𝒏

𝟐
−𝒛′

_𝒍𝒆𝒏

𝟐
−𝒛′

 

 

Evaluating this integral yields: 

 

Br= ln(…) 
 

 
 

3 Magnetic Field outside a finite solenoid 

In the following derivations, we will use the same cylindrical coordinate system with the standard (r,, z) coordinates. The z-axis 

lies on the central axis of the solenoid.  is the azimuthal angle while r is measured from the center axis. r’ is the radial distance 

from the axis of the solenoid to a point P above it.  

 

We will derive multiple approximations depending on the relative values of r’, R, and Len for a single component.  

 

3.1 Axial component of magnetic field (r’<<Len) 

Consider an arbitrary rectangular closed loop placed such that a side of length Δz lies on the axis of the solenoid. The center of 

the side lies an arbitrary distance z’ from the center of the solenoid. The other two sides extend radially a length R+Δr. Assume 

that Δr~0 and Δz~0. Label the left and right corners on the axis of the solenoid a and b respectively. Label the left and right 

corners at r’= R+Δr e and d respectively. Lastly, label the left and right points where the loop intersect the solenoid as f and c 

respectively. (Needs to be cleared up) 

 

The integral form of Ampere’s Law states that ∮ 𝑩 ∗ 𝒅𝑻 = ∬ 𝑱 ∗ 𝒅𝑨 + ε
𝑑Ψ 

𝑑𝑡
, where dT is the infinitesimal tangent vector 

around a closed path, J is the current density, dA is the infinitesimal areal normal vector,  Ψ is the electric flux, and ε is the 

vacuum permittivity. “*”denotes the inner product. 

In this case, Ψ = 0. Since ∬ 𝑱 ∗ 𝒅𝑨 is the enclosed current, Ie the above expressions simplifies to: 

∮ 𝑩 ∗ 𝒅𝑻 = 𝐼𝑒 (6) 

 

Applying the above formula to the rectangular loop and replacing dT with either dz or dr, we have  

∫ 𝑩𝑖𝑛

𝑏

𝑎

∗ 𝑑𝒛 + ∫ 𝑩𝑖𝑛

𝑐

𝑏

∗ 𝑑𝒓 + ∫ 𝑩𝑜𝑢𝑡

𝑑

𝑐

∗ 𝑑𝒓 + ∫ 𝑩𝑜𝑢𝑡

𝑒

𝑑

∗ 𝑑𝒛 + ∫ 𝑩𝑜𝑢𝑡

𝑓

𝑒

∗ 𝑑𝒓 + ∫ 𝑩𝑖𝑛

𝑎

𝑓

∗ 𝑑𝒓 = 𝐼𝑒(7) 

 

Symmetry considerations tell us that B is a function of r and z and has two components B(r)(r,z) and B(z). We ignore B() at this 

point in the paper. Therefore, we have 

   B(r,z)=B(r)(r,z)+B(z)(r,z)  (8)  

We then can replace B in (7) with (8). Furthermore, we can utilize the distributivity of the inner product to get 

∫ 𝐵(𝑧)𝑖𝑛

𝑏

𝑎

𝑑𝑧 + ∫ 𝐵(𝑟)𝑖𝑛

𝑐

𝑏

𝑑𝑟 + ∫ 𝐵(𝑟)𝑜𝑢𝑡

𝑑

𝑐

𝑑𝑟 + ∫ 𝐵(𝑧)𝑜𝑢𝑡

𝑒

𝑑

𝑑𝑧 − ∫ 𝐵(𝑟)𝑜𝑢𝑡

𝑓

𝑒

𝑑𝑟 − ∫ 𝐵(𝑟)𝑖𝑛

𝑎

𝑓

𝑑𝑟 = 𝐼𝑒(9) 
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Since Δz~0, We can safely say that the B(r)in on the interval b-c and a-f are approximately of the same magnitude. Likewise, 

B(r)(out) on the interval c-d and e-f are approximately of the same magnitude. Thus, the integrals in question are equal in 

magnitude but they are opposite in sign. We then can eliminate these integrals, yielding 

 

∫ 𝐵(𝑧)𝑖𝑛

𝑏

𝑎

𝑑𝑧 + ∫ 𝐵(𝑧)𝑜𝑢𝑡

𝑒

𝑑

𝑑𝑧 = 𝐼𝑒(10) 

Since Δz~0, we can assume 𝐵(𝑧) to be roughly constant over the integration region of both integrals. Hence, we can factor B(z) 

out of both integrals which just become Δz. Finally, since Ie=In Δz, we have 

 

𝐵(𝑧)𝑖𝑛Δz + 𝐵(𝑧)𝑜𝑢𝑡Δz = 𝐼𝑛Δz(11) 

 

Substituting (5) in for 𝐵(𝑧)𝑖𝑛 evaluated at z’ and simplifying, we arrive at 

 

𝐵(𝑧)𝑜𝑢𝑡 = 𝑛𝐼(1 −
1

2
(

𝐿𝑒𝑛

2
−𝑧′

√𝑅2+(
𝐿𝑒𝑛

2
+𝑧′)

2
+

𝐿𝑒𝑛

2
+𝑧′

√(𝑅2+(
𝐿𝑒𝑛

2
+𝑧′)

2
) (12) 

We can normalize the expression above with 𝐾 =
𝐿𝑒𝑛

𝑅
 and 𝐶 =

𝑧′

𝑅
 a and to get  

 

B(z)out=𝑛𝐼(1 −
1

2
(

𝐾

2
−𝐶

√1+(
𝐾

2
−𝐶)

2
+

𝐾

2
+𝐶

√(1+(
𝐾

2
+𝐶)

2
) (13) 

This is only an approximation, as it assumes that both B(z) and B(r) are constant over a small Δz. Furthermore, it can only be true 

close to the solenoid (r~R) as the expression above does not vary with 
1

𝑟𝑘, where k is a constant as required by the Biot-Savart 

law.  

 

 It is clear that lim
𝐾→∞

𝐵(𝑧)𝑜𝑢𝑡=0, the expected result.  

 

3.2 Axial component of magnetic field (r’>>R) 

Here, we will use the spherical coordinates (r, θ, Ψ’). Θ is the polar angle, r is the radial distance from the origin, and Ψ’ is the 

azimuthal angle.  

We first explore the case of a single current loop. Here, R is the radius of the loop and r is the distance from the center of the loop 

to a point P that is an axial distance z and radial distance r’ from the axis of the loop. We work in a coordinate system that takes 

z=0 at the point P. Below, we look at the scenario where z is positive.  

 

Ref( ) states the following: 

 Br=
𝐼𝑅2 cos θ

2𝑟3  (14) 

Bθ=
𝐼𝑅2 sin θ

4𝑟3  (15) 

BΨ’=0 (16) 

 

In this case, r=√(𝑟′2 + 𝑧2), cos θ=
−𝑧

√𝑟′2
+𝑧2

, and sin θ =
𝑟′

√𝑟′2
+𝑧2

. Substituting these values into (14) and (15) yields 

 

 

Br=
−𝐼𝑅2𝑧

2(𝑟′2
+𝑧2)

2 (17) 

 

Bθ=
𝐼𝑅2𝑟′

4(𝑟′2
+𝑧2)

2 (18) 

To find the axial components of each B field component, we scale each B-field component by an appropriate trigonometric 

scalar. It is an easy task to determine the angles between the B field components and the z-axis. We state that (Picture?) 

Br(z)=Brcos( 𝜋 − θ) =
𝐼𝑅2𝑧2

2(𝑟′2
+𝑧2)

5
2

 𝒛   (19) 

Bθ (z)=Bθsin( 𝜋 − θ) =
𝐼𝑅2𝑟′2

4(𝑟′2
+𝑧2)

5
2

 z  (20) 

 

Where Br(z) and Bθ (z) are the components of Br  and Bθ on the z-axis respectively. Z is the unit vector along the z-axis  

Since, B(z)= Br(z)- Bθ (z), we have 

 



  Page 1 

DRAFT 6/22/19 

   

 

B(z)=
𝐼𝑅2

2(𝑟′2
+𝑧2)

5
2

(𝑧2 −
𝑟′2

2
) z  (21) 

Assuming that the solenoid is a tightly-packed collection of loops, we can say that each loop contributes a  

𝑑𝐵(𝑙𝑜𝑜𝑝) =
𝐼𝑅2

2(𝑟′2 + 𝑧2)
5
2

(𝑧2 −
𝑟′2

2
) (22) 

to the total B-field on the axis of the solenoid.  

For a given dz of the solenoid, the value of dI within that dz is given by dI=𝐼𝑛𝑑𝑧, where 𝑛 =
𝑁

𝐿𝑒𝑛
, the number of turns (N) per unit 

length (Len). We then have: 

𝑑𝐵(𝑙𝑜𝑜𝑝) =
𝐼𝑛𝑅2𝑑𝑧

2(𝑟′2 + 𝑧2)
5
2

(𝑧2 −
𝑟′2

2
) (23) 

Integration of this expression over the solenoid yields the total Bnetz component at any point P with z-coordinate  z’ (measured 

from the center of the solenoid). This integral is easily solved by performing a standard trigonometric substitution with 𝑧 =
𝑅 tan ø.  

 

Bz=∫
𝐼𝑛𝑅2𝑑𝑧

2(𝑟′2
+𝑧2)

5
2

(𝑧2 −
𝑟′2

2
)

𝐿𝑒𝑛

2
−𝑧′

−
𝐿𝑒𝑛

2
−𝑧′

= 𝑛𝐼𝑅2 (
2𝑧′−𝐿𝑒𝑛

(2𝑧′−𝐿𝑒𝑛)2+4𝑟′2
)

3
2

−
2𝑧′+𝐿𝑒𝑛

(2𝑧′+𝐿𝑒𝑛)2+4𝑟′2
)

3
2

) (24) 

 

Again, this is only an approximation for a finite r’ as the above equation is only an approximation for finite r’ as it assumes that 

the solenoid is an infinitely tightly-packed stack of closed loops.  

 

It is clear that (keeping r’ and z’ constant) lim
𝐿𝑒𝑛→∞

𝐵(𝑧)𝑜𝑢𝑡=0, the expected result.  

 

3.3 Radial component of magnetic field (r’>>R) 

We repeat the same method as in 3.2. To find the radial components of each B field component, we scale each B-field component 

by an appropriate trigonometric scalar. It is an easy task to determine the angles between the B field components and the z-axis. 

We state that, for +z, (Picture?) 

Br(r)=Brsin( 𝜋 − θ) =
𝐼𝑅2𝑧′𝑟′

2(𝑟′2
+𝑧2)

5
2

𝒓   (25) 

Bθ (r)=Bθcos( 𝜋 − θ) =
𝐼𝑅2𝑟′1

𝑧′

4(𝑟′2
+𝑧2)

5
2

 𝒓   (26) 

 

Where Br(r) and Bθ (r) are the components of Br  and Bθ in the radial direction respectively. R is the unit vector in the radial 

direction  

Since, B(r)= Br(r)- Bθ (r), we have 

 

B(r)= 
−3𝐼𝑅2𝑟′𝑧′

3(𝑟′2
+𝑧2)

5
2

 z  (27) 

For -z, B(r) becomes positive. In integrating the above expression in the same way outlined above in this paper, we have to be 

careful regarding this sign change. 

 

B(r)=∫
𝑧

(𝑧2+𝑟′2
)

5/2 𝑑𝑧
0

−
𝑙𝑒𝑛

2
−𝑧′ -∫

𝑧

(𝑧2+𝑟′2
)

5
2

𝑑𝑧
𝐿𝑒𝑛

2
−𝑧′

0
 (28) 

Finding the antiderivative is easy, simply let u=𝑧2 + 𝑟′2
. Evaluating the definite integrals yields: 

 

𝐵(𝑟) =
2

3
(

1

(
𝑙𝑒𝑛
2 − 𝑧′)

2

+ 𝑟′2)
3
2

−
1

𝑟′3
).   (29) 

 

 

It is clear that the above equation is only an approximation for finite r’ as it assumes that the solenoid is an infinitely tightly-

packed stack of closed loops.  

 

Clearly,  (Keeping r’ and z’ constant) lim
𝐿𝑒𝑛→∞

𝐵(𝑟)𝑜𝑢𝑡=0, the expected result.  
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3.3 Azimuthal Component of Magnetic Field 

 

A real solenoid is not simply a collection of loops. Rather, there is an axial current, Ia that runs along the length of the solenoid. 

Hence, there will be a B(𝜑) component outside the solenoid. We shall treat the solenoid as a cylindrical sheet of current Ia (radius 

R, length Len)  and curent density J. We shall use the cylindrical coordinates (r, 𝜑, z) 

 

We can view this sheet of current as made up of infinitely many thin “strips” of current with length Len and width Rd𝜑. 

 

The B-field of a finite wire is known: 

 

𝐵(𝑤𝑖𝑟𝑒) =
𝐼

4𝜋𝑟
(

𝐿𝑒𝑛 + 2𝑧′

√4𝑟2 + (𝐿𝑒𝑛 + 2𝑧′)2
+ (

𝐿𝑒𝑛 − 2𝑧′)

√4𝑟2 + (𝐿𝑒𝑛 − 2𝑧′)2
) (30) 

 

Where r is the radial distance from the wire to an arbitrary point p and z’ is the distance from the center of the wire to P. r’ 

denotes the perpendicular distance from P to the axis of the solenoid. For a single “strip”, we can use the above formula to 

calculate the contribution of that wire to the total B-field. 

 

Simple geometry and the law of cosines tells us that for an arbitrary “strip”, 𝑟 = √𝑅2 + 𝑟′2 − 2𝑅𝑟 sin 𝜑. We the have: 

 

𝐵(𝑤𝑖𝑟𝑒) =
𝐼

4𝜋√𝑅2+𝑟′2−2𝑅𝑟 sin 𝜑
(

𝐿𝑒𝑛+2𝑧′

√4(𝑅2+𝑟′2−2𝑅𝑟 sin 𝜑)+(𝐿𝑒𝑛+2𝑧′)2
+ (

𝐿𝑒𝑛−2𝑧′)

√4(𝑅2+𝑟′2−2𝑅𝑟 sin 𝜑)+(𝐿𝑒𝑛−2𝑧′)2
)  (31) 

 

The net B-field only has a 𝜑-component, and each wire contributes to some portion of that B-field. Vector components yields 

that B(𝜑)=B|cos 𝜑|. The absolute value bars are added as cos 𝜑 is negative for 
𝜋

2
< 𝜑 < 𝜋.  

 

Furthermore, we know that 
𝑑𝐼

𝐿𝑒𝑛Rd𝜑
=

𝐼𝑎

2𝜋𝐿𝑒𝑛𝑅
= 𝐽, where dI is the infinitesimal amount of current in each strip. 

 

Solving for dI in terms of Ia  and writing B(𝜑) in terms of an integral yields 

 

 

 

𝐵(𝜑) =
𝐼𝑎

8𝜋2 ∫
|cos 𝜑|

(𝑅2 + 𝑟′2 − 2𝑅𝑟 sin 𝜑)
(

𝐿𝑒𝑛 + 2𝑧′

√4(𝑅2 + 𝑟′2 − 2𝑅𝑟 sin 𝜑) + (𝐿𝑒𝑛 + 2𝑧′)2
+

𝐿𝑒𝑛 − 2𝑧′)

√4(𝑅2 + 𝑟′2 − 2𝑅𝑟 sin 𝜑) + (𝐿𝑒𝑛 − 2𝑧′)2

2𝜋

0

 𝑑𝜑  (32) 

 

This integral can be evaluated numerically. The exact value of Ia depends on the geometry of the solenoid. Of course, this 

expression is only an approximation because it assumes that the solenoid is a cylindrical sheet of current Ia, which is not the case, 

no matter the exact geometry of the solenoid.   

 

 

4. Conclusion 

 

We have presented 7 quantitative expressions for the B-field of the finite solenoid. These can be used in practice or for teaching 

purposes regarding magnetic fields in general 
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